
SQL Part 2
S t O t U i A sub-query is aSet Operators : Union

SQL supports the standard operations on sets:
i (k d UNION) i l d ll h d d b i h f

q y
complete query used
as part of bigger query

– unions (keyword UNION) - include all the records returned by either of
two sub-queries

– intersections (keyword INTERSECT) - include all the records returned by
both of two sub queriesboth of two sub-queries

– differences (keyword EXCEPT or, in Oracle, MINUS) - include all the
records returned by one sub-query excluding those returned by another
sub-querysub query

Example of UNION: All people living in Glasgow whether staff or
studentsstudents

(SELECT ID, firstN, lastN, email
FROM Student
WHERE it 'Gl ')WHERE city = 'Glasgow')

UNION
(SELECT ID, fname, lname, email

377 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

FROM Staff
WHERE city = 'Glasgow‘);

Restrictions on Set Operators

Note both sides of the UNION must have exactly the same columns
i.e. the same number of columns

and each column must be of the same domain
the names can differ as above

Although the Select-From-Where statement uses bag semantics, the default
for union, intersection, and difference is set semantics

– i e duplicates are removed Why? Efficiencyi.e. duplicates are removed. Why? Efficiency
– When doing a projection in relational algebra, it is easier to avoid eliminating

duplicates
J t k t l t ti• Just work tuple-at-a-time

– Saves time of not comparing tuples as we generate them.
– When doing intersection or difference, it is most efficient to sort the relations first

• At that point you may as well eliminate the duplicates anyway.

If you want to retain duplicates add the word ALL – e.g. UNION ALL

378 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

y p g U O

Example

ID Fname Lname ID FirstN LastN
Staff Student

11 John Donne

12 Andrew Marvell

13 B J h

11 John Wayne

12 Ward Bond

13 B J h13 Ben Johnson

14 Henry Vaughan
13 Ben Johnson

14 Harry Carey, Jr.

St ff UNION St d t ID Fname Lname
Staff UNION ALL Student

ID Fname Lname
11 John Donne

Staff UNION Student

ID Fname Lname
11 John Donne

Staff MINUS Student
ID Fname Lname
11 John Donne

12 Andrew Marvell

12 Andrew Marvell

13 Ben Johnson

14 H V h

11 John Donne

12 Andrew Marvell

14 Henry Vaughan

13 Ben Johnson

14 Henry Vaughan

11 John Wayne14 Henry Vaughan

11 John Wayne

12 Ward Bond ID Fname Lname
Staff INTERSECT Student

11 John Wayne

12 Ward Bond

13 Ben Johnson

379 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

14 Harry Carey, Jr. 13 Ben Johnson 14 Harry Carey, Jr.

The Semantics of Single Table Queries Key Slide

To emphasise the meaning of the a single table, let’s compare it to a Java method
defined on a class with the same variables as columns in the table

SELECT d t fBi th h t t– e.g. SELECT dateofBirth, house, street
FROM Employee

WHERE city = ‘Glasgow’;

Employee[] emps; // i.e. an array of Employee objects
public void employeeDetails()
{ println(“dateofBirth” + “ “ + “house” + “ “ + “street”) // heading

for (int e=0; e<emps.length; e++) // once through the loop for each emp
if (emps[e].city == “Glasgow”)(p [] y g)

println(emps[e]. dateofBirth + “ “ + emps[e]. house +
“ “ + emps[e]. street);

}}
– i.e. we iterate through the set of tuples

• for each one we evaluate the boolean expression in the where clause

380 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

• if it returns TRUE, print the values specified in the SELECT clause expressions

Multi-Table Queries Key Slide

List the names and salaries of all employees in the research dept

SELECT name, salary // columns in answer – this is RA project

FROM Employee, Department // Cartesian Project in RA

WHERE dept = dNum // foreign keys – RA join

AND dN 'R h' // t i ti d t RA l tAND dName = 'Research'; // restriction on data - RA select

This style is usual in SQL. It uses the Cartesian Product followed by
selection then projection in Relational Algebra

A recommended style is to have all the foreign keys restrictions first,
nearest the list of tables

381 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

The Semantics of Multi-Table Queries

Again, let’s compare it to a Java method defined on a class with the same
variables as columns in the table

SELECT E P FROM E l W k O P j t– e.g. SELECT Ename, Pname FROM Employee, WorksOn, Project
WHERE city = ‘Glasgow’ and Employee.Enumber = WorksOn.emp

AND WorksOn.proj = Project.Pnumber;

– and assume we have a class with arrays Es, WOs and Ps holding three sets of
objects equivalent to the three sets of records in the tables

public void employeeAndProjectNames()
{ println(“Ename” + “ “ + “Pname”) // a heading for the output

for (int e=0; e < Es.length; e++)(; g ;)
for (int wo=0; wo < WOs.length; wo++) // nested for loops

for (int p=0; p < Ps.length; p++)
if (Es[e] cit “Glasgo ” and Es[e] En mber WOs[o] empif (Es[e].city = “Glasgow” and Es[e].Enumber = WOs[wo].emp

and WOs[wo].proj = Ps[p].Pnumber)
println(Es[e].Ename + “ “ + Ps[p].Pname);

382 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

}

Tuple Cursor Variables Key Slide

Each element in the FROM clause introduces a cursor variable, for use in
the other clauses, which ranges over the tuples in its relation

thi i d i SELECT d WHERE t t t th l i th l f– this is used in SELECT and WHERE to get at the values in the column of
a relation

A tuple variable may be:p y
– invisible (as in the examples so far)

• If the column names can’t be confused, they can be used without
identifying which relation they come fromy g y

– e.g. there was no confusion about where the column dName was
– implicit

• If there are two columns with the same name in different tables they• If there are two columns with the same name in different tables, they
must be distinguished with a tuple variable and the table name can be
used for this

e g Department dName would work fine– e.g. Department.dName would work fine
– explicit

• Either to shorten the code or to disambiguate two uses of the same
t bl i t d li it i bl

383 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

table, we can introduce an explicit variable name:
– e.g. given FROM Department D we can use D.dName

Example Identifying Attributes Using the Table Name

Using an implicit or explicit cursor is essential if a field name is identical in both
tablestables

Suppose project name and department name are both in columns called name

List the names of all projects in the research dept

SELECT Project.name // essential

FROM Project, Department

WHERE (Department.dNum = Project.conDept) // optional(j) p

AND (Department.name = 'Research') // essential

384 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

Your Own Cursor Names

Useful if you’d like cursors that are shorter than table names

You can also think of these cursor names as aliases for the table namesYou can also think of these cursor names as aliases for the table names

SELECT P.name
FROM Project P, Department DFROM Project P, Department D

WHERE (D.dNum = P.pDept)
AND (D.name = 'Research')

They are necessary if the same table is used more than once in a query

Example print out the staff numbers of all pairs of people who work onExample, print out the staff numbers of all pairs of people who work on
the same project:

SELECT W1 emp W2 empSELECT W1.emp, W2.emp
FROM WorksOn W1, WorksOn W2

WHERE W1.wpNum = W2.wpNum

385 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

WHERE W1.wpNum W2.wpNum

Nested Queries Key Slide

In the where clause we can test whether a value is related to the result of a
nested sub-query

Find the names of all the projects that John Smith works on

SELECT pName
FROM Project

WHERE pNum IN
(SELECT wPNum FROM WorksOn, Employee

WHERE ni#= wni# AND name = ‘John Smith');WHERE ni#= wni# AND name = John Smith);

The sub-query (in brackets) is evaluated as a set of project numbers, and then a
test for incl sion is madetest for inclusion is made

Because sub-queries are only internal to the query and never seen, they don’t
i i

386 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

contain duplicates and they cannot be ordered

Operators Using Subqueries Key Slide

There are then four new operators that can appear in the WHERE clause
to test a tuple against a relation (usually the result of a sub-query):

l IN l i t t if th t t l i i th l ti– tuple IN relation returns true if that tuple is in the relation

– EXISTS relation returns true if the relation has at least one tuple

tuple relationship ANY relation returns true if the tuple stands in the– tuple relationship ANY relation returns true if the tuple stands in the
stated relationship (e.g. “>”) to at least one of the tuples in the relation

– tuple relationship ALL relation returns true if the tuple stands in the
stated relationship (e.g. “>”) to all of the tuples in the relation

Again NOT can be used before these <---- this is where it gets very hardg g y

There is also the use of arithmetic comparisons if the subquery returns a
single value – i.e. it is a scalar subquerysingle value i.e. it is a scalar subquery
– if the query returns just one value, we can think of the comparison as

being of just two numbers although, formally, these are still a relation with
one row and one column

387 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

one row and one column

The Operator IN

IN tests if a tuple on the left hand side is one of the tuples in the relation on
the right hand side – usually this is returned by a subquery, e.g.

SELECT pName FROM Project
WHERE pNum IN

(S C O O(SELECT wPNum FROM WorksOn, Employee
WHERE NI#= wni# AND name = ‘John Smith');

IN on its own is rarely valuable as this is the same as:

SELECT pName FROM Project, WorksOn, Employee
WHERE NI#= wNI # AND PNum = wPNum

AND name = ‘John Smith’;

NOT IN is much more useful

388 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

Using NOT IN

Consider:
SELECT pName FROM Project

WHERE N INWHERE pNum IN
(SELECT wPNum FROM WorksOn, Employee

WHERE NI#= wni# AND name <> ‘John Smith');

Does this return the projects that John Smith does not work on
– Answer: NO It returns the projects which everyone else works on and this mayAnswer: NO It returns the projects which everyone else works on and this may

include some that John Smith works on

To achieve the projects that John Smith does not work on we must do:To achieve the projects that John Smith does not work on we must do:

SELECT pName FROM Project
WHERE pNum NOT INWHERE pNum NOT IN

(SELECT wPNum FROM WorksOn, Employee
WHERE NI#= wni# AND name = ‘John Smith');

389 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

Using NOT IN

Using NOT IN asserts that the tuple is not one of those in the relation on the
right hand side, again usually the result returned by a subquery

Thi i th l f hi i i– This is the only way of achieving some queries
– But it is very hard for us to deal with requesting negative information

For instance, asking for employees not managed by John Smith is achieved
by:

SELECT name FROM Employee
WHERE mgrni# NOT IN

(SELECT NI# FROM Employee WHERE name = ‘John Smith’);(SELECT NI# FROM Employee WHERE name John Smith);

MINUS or EXCEPT can usually be used instead:

SELECT name
FROM (Employee

MINUS

390 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

MINUS
(SELECT * FROM Employee WHERE name = ‘John Smith’));

The Operator EXISTS

EXISTS tests a relation to see if it is empty
– The relation is almost always a subquery result

For instance to find the names of all employees with dependents

SELECT FROM E lSELECT name FROM Employee
WHERE EXISTS

(SELECT * FROM Dependent
WHERE Employee.ni# = Dependent.eni#);

Again NOT EXISTS is going to prove more useful (and harder toAgain NOT EXISTS is going to prove more useful (and harder to
understand)

391 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

The Operators ANY, SOME and ALL

The operator ANY or SOME is used
– to test a single value against a single column relation using a comparison

operator e g “ “ or “<“operator, e.g. “=“ or “<“
– and returns true if the comparison operator returns true for at least 1 record,
– e.g. Find the names of employees that earn more than someone on Project 5

SELECT name FROM Employee
WHERE salary > ANY

(SELECT salary FROM WorksOn Employee(SELECT salary FROM WorksOn, Employee
WHERE wPNum=5 and ni# = wNi#);

The operator ALL is similar except it returns true if the comparisonThe operator ALL is similar, except it returns true if the comparison
operator returns true for every record

– e.g. to names of employees that earn more than everyone on Project 5,
replace ANY ith ALLreplace ANY with ALL

SELECT name FROM Employee
WHERE salary > ALL

392 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

(SELECT salary FROM WorksOn, Employee
WHERE wPNum=5 and ni# = wNi#);

Division Queries

Queries which try to find tuples which relate to every record in another
relation are called division queries

b th l d i th l ti l l b b th di i i t– because they are solved in the relational algebra by the division operator
– they are the most difficult to understand of all SQL queries
– example:

• Give the name of employees who work on all Department 5's
projects

The strategy for solving these kinds of query is:
1) Find the values of all the primary keys in the related relation – e.g. the

project numbers of all of department 5’s projectsp j p p j
2) Find the values of the foreign keys of the tuple to be tested – e.g. all the

projects that this employee works on
3) Return the tuple if result 2 includes all of result 13) Return the tuple if result 2 includes all of result 1

There are two ways of achieving this:
although the deprecated CONTAINS operator would have made things

393 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

– although the deprecated CONTAINS operator would have made things
much simpler

Division by using MINUS Key Slide

The query is achieved by saying that there are no records in the target relation
that are not related to the target tuple

For the example:

SELECT name FROM Employee E
WHERE NOT EXISTS

Find all the projects in dept 5p j p
((SELECT P.pNum FROM Project P WHERE P.pdNum = 5)

MINUS
Find all the projects that the Employee works onFind all the projects that the Employee works on

(SELECT WO.wpNum FROM WorksOn WO
WHERE E.ni# = WO.wNi#))

394 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

Division by using only NOT EXISTS

The query is achieved by saying that there are no records in WorksOn where the
project is controlled by department 5 and there is no matching record in
WorksOn relating the same project and the employee being tested i eWorksOn relating the same project and the employee being tested, i.e.
– For the example:

SELECT name FROM Employee E
WHERE NOT EXISTS

Find all the works on record related to dept 5
(SELECT * FROM WorksOn W1(SELECT * FROM WorksOn W1

WHERE W1.Pnum IN
(SELECT PNumber FROM Project WHERE Dnum = 5)

AND NOT EXISTS
Find all the projects that the Employee works on

(SELECT * FROM WorksOn W2(SELECT FROM WorksOn W2
WHERE E.ni# = W2.wNi# AND W1.Pnum = W2.Pnum)

– This is as hard as it gets in SQL and is needed only if MINUS or EXCEPT are

395 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

This is as hard as it gets in SQL and is needed only if MINUS or EXCEPT are
unavailable

Aggregate Functions Key Slide

We can write
SELECT AVG (salary) FROM EmployeeSELECT AVG (salary) FROM Employee

– which returns one value from a column in the table
– SUM, MIN & MAX are also available

COUNT is slightly different – it counts the records, e.g.

SELECT COUNT (*) from EmployeeSELECT COUNT (*) from Employee

returns the number of records in the table, while

SELECT COUNT (salary) from Employee

returns the number of records in which salary is not NULL andreturns the number of records in which salary is not NULL and

SELECT COUNT (distinct salary) from Employee

396 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

which returns the number of different salaries in the table

Group By and Having Clauses Key Slide

SELECT AVG(salary), dept produces the average salary
FROM Employee for each department
GROUP BY dept one record for each

When using GROUP BY, we are, however, restricted in what is in the
SELECT to those things known to be single valued within each group:SELECT to those things known to be single valued within each group:
– aggregates or the columns explicitly named in GROUP BY
– even if we know that another column is unique in the group we cannot use it

• e.g. if we put a column Dname in Employee as well then we can’t use it
even though we know that for each group Dname is unique

• i.e. the following would throw up an error :g p
SELECT Dnum, Dname, COUNT(*), AVG(Salary)

FROM Employee
GROUP BY Dnum;GROUP BY Dnum;

Appending HAVING COUNT (*) > 2 restricts the query to departments with
h l

397 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

more than two employees.
– HAVING is like a WHERE for aggregate functions

The Order By Clause Key Slide

SELECT * FROM Employee
ORDER BY salary DESC, lName ASC

This returns the results ordered first in descending order of salary and then
in alphabetical order of name.

– ASC is the default, so can be omitted

Ordering is useful for ALL queries which return more than a few linesg f f q f

Note that ordering should never be used in a sub-query

– since the internal workings of a query are not ordered

– the only place where ordering matters is the part that involves the user

i th t t l t• i.e. the outermost select

398 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

Scalar Subqueries Key Slide

If only one tuple with one column is returned it can be treated like a constant
– This makes most sense if it also returns one component, e.g.

SELECT street FROM Employee WHERE Enumber = 1234;
or SELECT MAX(salary) FROM Employee;

– The result can therefore be used in simple comparisons, e.g.

SELECT name FROM Employee WHERE street =
(SELECT street FROM Employee WHERE Enumber = 1234);

gives the names of employees living on the same street as emp 1234

SELECT name FROM Employee
WHERE salary = (SELECT MAX(salary) FROM Employee);
gives the name of the highest paid employee(s)

– Typically, a single tuple is guaranteed by the presence of key attributes or the use
f f i

399 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

of aggregate functions
• A run-time error occurs if there is no tuple or more than one tuple

Parameterised Queries

Many queries will be more versatile if you could change the value searched for at
run-time
– these are the basis of “canned queries”

In Oracle, replace the literal with a prompt preceded by ‘&’

The prompt may often be the same as the attribute name, but doesn’t have to be.
e.g. Alter which city you are interested ing y y

SELECT * FROM Employee WHERE city = &name_of_city;
– When this query is run, the user is prompted to ‘Enter name_of_city : ’
– Running a parameterised query in the Query Analyser is slightly complex.

• Execute the query
• The prompt appears in the output panelThe prompt appears in the output panel
• Type the parameter into the input panel, overwriting anything that is there

already
P ‘E t ’

400 12/11/2009MSc/Dip IT – ISD L16 Complex SQL Queries (377-400)

• Press ‘Execute’
– The results should appear in the output panel

